Appendix 7

Soil Study
PRELIMINARY REPORT

ON THE GEOTECHNICAL EXPLORATION PERFORMED AT THE SITE OF THE PROPOSED IMPROVEMENTS TO INTERSECTION PR-2, 2R & SAN JUAN ST. (RUM ENTRANCE, LA VITA), MAYAGUEZ, PUERTO RICO

Submitted to:
José A. Batlle, PE
Jose A. Batlle & Associates, PSC

Prepared by:
Carlos R. Sierra Del Llano, MSCE, PE
Rommel Cintrón Aponte, MSCE, PE

Date:
February 6, 2017

Job no. 7716

This report contains 61 pages including cover.
PRELIMINARY REPORT

ON THE GEOTECHNICAL EXPLORATION PERFORMED AT THE SITE OF THE PROPOSED IMPROVEMENTS TO INTERSECTION PR-2, 2R & SAN JUAN ST. (RUM ENTRANCE, LA VITA), MAYAGUEZ, PUERTO RICO

1.0 INTRODUCTION:

The present soil report covers the results of the preliminary geotechnical exploration performed at the site of the proposed improvements to intersection PR-2, PR-2R and San Juan St. (main entrance of University of Puerto Rico, Mayaguez Campus) located at state road PR-2 Km. 153.9, Municipality of Mayaguez, Puerto Rico. Improvements extend to the north along PR-2 up to intersections with PR-3108 and PR-102.

Jaca & Sierra Engineering, PSC was contracted by Jose A. Batlle & Associates, PSC to conduct site investigations and prepare preliminary geotechnical recommendations for the project. The exploration program was directed to obtain subsurface soil information to be utilized in our engineering evaluation and in the formulation of pertinent recommendations for the intended improvement alternatives.

This preliminary geotechnical study was carried out in function of roadway and profile plans for four (4) different alternatives provided by Mr. Jose A. Batlle, PE. This soil report has been prepared for the exclusive use of the owner, their architects, engineers and/or others involved in the preparation of design plans and specifications for the project.
2.0 FIELD AND LABORATORY WORK:

The field exploration consisted of drilling a total of six (6) test borings distributed within the proposed improvements along state road PR-2. Borings were drilled to depths from 45 to 85 feet Beneath Existing Ground Surface (BEGS). Refer to boring location plan on Appendix A.

Subsurface drilling was executed by means of the power auger method as per ASTM D1452 using a CME-55 trailer-mounted drill rig to drive a 2.25-inch Internal Diameter (ID) helical hollow-stem auger into the ground. In-situ testing and soil sampling were achieved by means of the universally adopted Standard Penetration Test (SPT) and split-spoon sampler method according to ASTM D1586. Undisturbed soil samples were collected using Shelby tube samplers.

The soil samples were secured in jars and transported to our laboratory for visual-manual description (ASTM D2488) and moisture content determination (ASTM D2216). Unconfined compressive strength (ASTM D2166) and soil classification (ASTM D422 for particle size analysis and ASTM D4318 for Atterberg limits) tests were performed in selected samples. Undisturbed soil samples were subjected to consolidation tests (ASTM D2435). The soil classification and consolidation tests results are displayed on Appendix B.

The field and laboratory information was gathered to prepare boring logs, which reveal the stratigraphy and soil properties at the locations of the borings. This report was based on the information obtained in the boring logs and plans submitted to us.
3.0 **SUBSOIL GENERALIZED CONDITIONS:**

3.1 **Site Geology:**

According to the U.S. Geological Survey (USGS) geologic map of the Mayaguez and Rosario Quadrangles, the explored area falls within geologic zones that correspond to *Alluvium (Qal)* and *Yauco Formation (Ky)*. *Two-Pyroxene Basalt (TKpb)* and *Swamp Deposits (Qs)* are in the vicinity of the area. Figure 1 below shows a portion of the geologic map and the approximate site location. The USGS describes the mentioned geologies as follows:

- **Alluvium (Qal)** – Poorly to moderately sorted and moderately to well-bedded sand, silt, and cobble or boulder gravel, chiefly along streams; includes unsorted rock-fall and landslide debris at foot of steep slopes.

- **Yauco Formation (Ky)** – Dark-bluish-gray to dark-gray, to dark-greenish-gray, interbedded, calcareous, volcaniclastic sandstone, siltstone, mudstone, claystone, limestone, and subordinate breccia and conglomerate, characteristically thin- to medium-bedded and fine- to medium-grained. The Yauco characteristically weathers to a light-orange-brown saprolite that preserves the texture and structure of the original rock.

- **Two-Pyroxene Basalt (TKpb)** – Light-greenish-gray to light- to dark-gray, porphyritic augite-hypersthene-plagioclase basalt. Weathers to a light-brownish-gray or light-brown grus soil. Preserved rounded masses of fresh rock are common in saprolite.

- **Swamp Deposits (Qs)** – Clay, silt, and organic matter; commonly covered by thick vegetation.
3.2 Soil Stratigraphy:

Two (2) main soil profiles were identified along the project site. One stratigraphy (borings no. 1, no. 4 and no. 5) is characterized by upper man-made fill material, followed by alluvium deposits, underlain by saprolitic and weathered horizons of the Yauco formation. Old swamp deposits are within the alluvium stratum. The other stratigraphy (borings no. 2, no. 3 and no. 6) consists of upper man-made fill material directly over saprolitic and weathered

horizons of the Yauco formation, with little or no alluvium layer in the middle. Each stratum is described as follows:

Stratum no. 1 – Man-Made Fill

The upper man-made fill material is composed mostly of silty sand with variable amounts of gravel. The layer thickness varies from 2 to 14 feet. SPT-N values recorded are varying from 16 to 70 blows per foot (bpf) of penetration. Higher N values are chiefly related to the presence of gravel. The moisture contents measured are from 2 to 20%.

Stratum no. 2 – Alluvium Deposits

The above described fill stratum overlays alluvium deposits in borings no. 1, no. 4 and no. 5. The layer occurs from 9 to 14 feet depth BEGS and extends from 59 to 69 feet depth BEGS. Alluvium deposits are mainly comprised of very soft to medium stiff clayey silt with traces of sand and loose to medium dense clayey sand with gravel. Very soft clayey silt with variable amounts of peat and organic matter from old swamp deposits is present at different depths between 15 and 55 feet depth BEGS. A relatively thin 5 feet layer (from 14 to 19 feet depth BEGS) of alluvium consisting of gravel with sand and clay was observed in boring no. 3. The SPT-N values within the clayey silt horizon are from 0 (i.e. the sampler was pushed through the layer with the weight of the hammer and no blows, e.g. Weight of Hammer depicted as WH in boring no. 1) to 9 bpf, while within the clayey sand horizon are from 5 to 19 bpf. Moisture contents obtained within non swamp soils are from 18 to 60%, while with peat and organic matter content are from 40 to 95%.
Stratum no. 3 – Saprolitic Yauco Formation

Below both fill and alluvium strata, a saprolitic horizon of the Yauco formation was found. The layer thickness varies from 5 to 55 feet. Saprolitic Yauco formation is decomposed as silty sand, clayey sand and clayey silt with variable amounts of rock fragments. SPT-N values registered are ranging from 13 to 100+ (i.e. refusal blow counts, e.g. 50 blows per 4 inches of penetration depicted as 50/4” in boring no. 3) bpf. The moisture contents fluctuated from 7 to 59 %.

Stratum no. 4 – Weathered Yauco Formation

The lower stratum encountered consists of a weathered horizon of the Yauco formation extending to the end of boreholes (45 to 85 feet depth BEGS). Weathered rock is sampled as rock fragments, sandy gravel, gravelly sand and silty sand. Most of the retrieved samples from the Yauco formation consist of weathered volcanic sandstone and siltstone. Weathered limestone is present in boring no. 5. The SPT tests resulted in N values between 29 and 100+ bpf. Moisture contents are from 7 to 41 %.

3.3 Groundwater Conditions:

The observations made at the time of our subsoil exploration revealed groundwater level in the order of 13 to 15 feet depth BEGS. Table 1 below presents groundwater level at each boring location. However, groundwater level may rise during and after prolonged rain events.
The above information corresponds to a general interpretation of the subsoil conditions of the explored area. For more detailed description regarding the soil profile, refer to the enclosed boring logs on Appendix A.

Table 1: Groundwater level at boring locations.

<table>
<thead>
<tr>
<th>Boring no.</th>
<th>Groundwater Level (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
</tbody>
</table>

4.0 PRELIMINARY RESULTS AND RECOMMENDATIONS:

The proposed project consists of improvements intended to optimize traffic along PR-2 from its intersection with PR-2R and San Juan St. to its intersections with PR-3108 and PR-102. Improvements include one (1) or two (2) bridges along PR-2 crossing over San Juan St. and PR-3108. At the moment, there are four (4) preliminary alternatives considered for design: “Viaducto”, “Camello”, “Diamante” and “Loops”.

The geotechnical investigation uncovered very soft compressible soils at the locations of borings no. 1, no. 4 and no. 5. These compressible soils are prone to consolidation settlements greater than tolerable limits under load increments. Hence, we recommend the design of a deep foundation system such as drilled shafts to transfer loads into the weathered horizon of the Yauco formation. On the other hand, borings no. 2 and no. 6 revealed shallow dense to very...
dense/very stiff to hard saprolitic horizon of the Yauco formation. Considering this shallow competent saprolite, a shallow foundation system is favorable at these locations. In case of boring no. 3, although it does not have compressible soils, it does have a considerable fill layer (14 feet thick) and the saprolitic horizon is at greater depth (below 20 feet depth BEGS). Consequently, it is our opinion that a deep foundation system will also be required at this location.

The following subsections provide preliminary geotechnical recommendations for shallow and deep foundations design as well as for bridge abutments and approach.

4.1 Shallow Foundations:

The relatively shallow saprolitic horizon at the locations of borings no. 2 and no. 6 is suitable to support structures over shallow foundation system. The base of the foundations shall be lowered to a minimum depth of 10 feet BEGS at these locations. This determination to use shallow foundations at certain supports is preliminary and shall be confirmed by additional test borings at the selected locations of the foundations. The conditions within the area of borings no. 2 and no. 3 are highly variable. Some of the proposed alternatives have alignments to the east of boring no. 2. The conditions at certain distance of boring no. 2 may not be viable for shallow foundations.

Where feasible, shallow foundations shall be designed considering the nominal bearing resistance (q_b) provided in this report and the bearing resistance factor (ϕ_b) as per American
Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications 2012 (Table 10.5.5.2.2-1). The AASHTO LRFD Bridge 2012 specifies a bearing resistance factor (ϕ) of 0.45 for footings resting over rock, which in our opinion is also applicable to the existing saprolite. Based on the present subsoil conditions, we preliminarily recommend a nominal bearing resistance (q_n) of 13,333 psf (ultimate) on areas having hard saprolitic soils or weathered rock at foundation level. Therefore, the resultant **factored bearing resistance (q_R)** is 6,000 psf.

Similarly, the nominal sliding resistance against failure by sliding (R_n) shall also be factorized. The formula to calculate the factored resistance against failure by sliding (R_s) is as follows:

$$R_s = \phi R_n = \phi_\tau R_\tau + \phi_{ep} R_{ep}$$

where ϕ_τ is the resistance factor for shear resistance between soil and foundation, R_τ is the nominal sliding resistance between soil and foundation, ϕ_{ep} is the resistance factor for passive resistance and R_{ep} is the nominal passive resistance of soil available throughout the design life of the structure. The AASHTO LRFD Bridge 2012 (Table 10.5.5.2.2-1) specifies sliding resistance factors for shear resistance (ϕ_τ) and passive resistance (ϕ_{ep}) of 0.80 and 0.50, respectively.

The nominal sliding resistance between soil and foundation (R_τ), considering cohesionless soil beneath the footing and concrete cast against soil, is calculated as follows:

$$R_\tau = V \tan(\phi_\tau)$$
where V is the total vertical force at the footing and ϕ is the angle of internal friction of soil beneath the footing. We recommend an angle of internal friction (ϕf) of 32° for nominal sliding resistance (Rτ) calculation. The nominal passive resistance (Rep) shall be included only if soil will be permanent in front of the foundation. However, consideration shall also be given to the possibility of future removal of the soil that provides the passive pressure.

4.2 Drilled Shafts:

Due to the presence of deep soft soils, deep foundation system will be necessary at the locations of borings no. 1, no. 3, no. 4 and no. 5. Each boring log was modeled using the geotechnical software SHAFT v5.0 to estimate compressive axial load capacities in function of depth. Different diameters were considered for drilled shaft design, from 48-inch to 96-inch, 6-inch interval.

Graphs exhibiting allowable compressive axial loads (in tons) for all diameters analyzed in function of depth (up to 80 feet depth BEGS) are illustrated on Appendix C. Note that the axial loads provided in graphs are allowable, not ultimate, so the factor of safety is already included. Please also notice that the depths refer to the existing ground surface elevation at the boring locations, thus actual depths need to be adjusted with respect to the final cutoff elevations.
For lateral load analysis, the soil parameters that can be used in the geotechnical software LPILE 2013 are tabularized on Appendix D. We could provide lateral load analysis results upon request and receipt of design loads (axial, lateral and moment).

The following general recommendations are made with regards to installation of the drilled shafts, testing requirements and quality assurance methods:

1. It envisioned and recommended that a permanent casing will be required for the zones having soft to very soft soils. Table 2 below shows the estimated casing length per boring location. Either temporary or permanent casing evaluation shall be covered in further depth in the final geotechnical report. Bentonite drilling will be required for stabilization during drilled shaft construction. Final design shall include performance or prescriptive specifications for different drilling and installation methods.

<table>
<thead>
<tr>
<th>Boring no.</th>
<th>Permanent Casing Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
</tr>
</tbody>
</table>

2. Load tests shall be made by means of Osterberg Cell Method. The quantity and locations of test piles shall be coordinated with the consultant geotechnical engineer and shall be further discussed on the final geotechnical report.
3. As part of the quality assurance of the proposed drilled shafts, we recommended performance of Crosshole Sonic Logging (CSL) per ASTM D6760 – 16 Standard Test Method for Integrity Testing of Concrete Deep Foundations by Ultrasonic Crosshole Testing. Similarly, the quantity and locations of these tests shall be further elaborated in the final geotechnical report by the geotechnical engineer of record of the project.

4. The installation of the drilled shafts shall be continuously monitored by third party geotechnical laboratory to provide drilling logs, casing installation, bentonite quality assurance/control testing, shaft base cleaning, reinforcement installation and tremie concrete pouring logs, among other details.

4.3 Bridge Abutments and Approach:

Based on the profile plans submitted to us, it is understood that bridge abutments may have maximum heights in the order of 15 feet. As mentioned above, there are very soft compressible soils at different depths between 15 and 55 feet depth BEGS at the locations of borings no. 1, no. 4 and no. 5, which are locations planned to support abutments and approach ramps. The new fill intended for the abutment structures will induce load increments within the compressible soil strata thus triggering consolidation settlements.

Consolidation settlements were estimated as a function of the height of the proposed abutments and soil properties gathered from laboratory consolidation tests. Considering
permanent fill heights of 6, 12 and 15 feet, we conducted preliminary calculations of primary consolidation settlements of 11, 19 and 24 inches, respectively. Similarly, additional secondary consolidation settlements will be 9, 11 and 12 inches, respectively. Therefore, total consolidation settlements for fill heights of 6, 12 and 15 feet are 20, 30 and 36 inches, respectively.

Consolidation is time dependent and settlements take place as a result of pore water dissipation from the void spaces of the saturated cohesive soils. The time required to achieve 90% of primary consolidation was computed in approximately 4 years. In order to shorten the time of consolidation settlements, the use of prefabricated vertical drains (i.e. wick drains) is typical; by shorten the water path distance for dissipation. Considering the use of vertical drains installed to depths up to reach the bottom of compressible soils (40 to 55 feet depth BEGS) and spaced to 5 and 6 feet interval, we estimated that the time for consolidation settlements will be reduced to 7 and 12 months, respectively.

Another concern will be slope stability and fill progress. Depending on the fill height and location, slope stability may need to be monitored by inclinometers. A plan for temporary slopes and stabilization measures shall be established for the final concept development. Settlement progress shall be monitored with settlement plates. It is preliminarily estimated that fill shall not be raised in level by more than 3 ft per week. Monitoring of embankment shall include: settlement plates, piezometers and inclinometers.
Based on the relatively high magnitude of settlements expected and long period of time for stabilization, it is our opinion that bridge abutments consisting of above-ground fill material and earth retaining structures is not the most cost-effective option for this project. As a feasible mitigation alternative for this condition, we recommend the use of low height abutment and approach to raise the road from existing elevations to the proposed bridge elevations. The abutments shall be supported over the herein recommended drilled shafts and the bridge design to provide as minimum height approach as possible. Similar design has been used for Viaduct over Baldorioty Avenue and Kennedy Avenue in San Juan, Puerto Rico.

We could analyze other options upon request and submission of details of the intended solution.

4.4 Seismic Site Classification:

Based on our evaluation of the test borings completed and our knowledge of the site geological conditions, it is our opinion that the seismic site classification at the project site as per International Building Code (IBC) 2009 and American Society of Civil Engineers (ASCE) Standard 7-05 is variable including Site Class C, D and E. Table 3 below presents the design spectral acceleration parameters at each boring location, where S_{DS} and S_{D1} are the design spectral acceleration parameters at short period and at 1 second period, respectively.
Table 3: Design spectral acceleration parameters at boring locations.

<table>
<thead>
<tr>
<th>Boring no.</th>
<th>Site Class</th>
<th>S_{DS}</th>
<th>S_{D1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>0.684</td>
<td>0.620</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>0.760</td>
<td>0.352</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>0.793</td>
<td>0.408</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>0.684</td>
<td>0.621</td>
</tr>
<tr>
<td>5</td>
<td>E</td>
<td>0.685</td>
<td>0.621</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>0.761</td>
<td>0.352</td>
</tr>
</tbody>
</table>

5.0 ADDITIONAL COMMENTS:

It is recommended that this submitted preliminary geotechnical report be carefully studied and evaluated to coordinate those pertinent office meetings during the project design stage to discuss the various considered project design concepts and to clarify or include any other pertinent geotechnical design recommendations not covered in our soil report, which would need to be covered in the final geotechnical report.

Please note that these preliminary recommendations have been provided based on limited site information. Once the project alternative and layout has been established, it is recommended that a final geotechnical exploration be performed to formulate more accurate recommendations.
We wish to thank you for the opportunity of submitting this preliminary geotechnical engineering report and remain,

Cordially yours,

JACA & SIERRA ENGINEERING, PSC

Carlos R. Sierra Del Llano, MSCE, PE

Rommel Cintrón Aponte, MSCE, PE

Enclosures
Appendix A: Boring Logs & Locations
Appendix B: Laboratory Tests Results
Appendix C: SHAFT v5.0 Software Graphs
Appendix D: LPILE 2013 Software Tables
Appendix E: Generalized Soil Profile
Appendix A:
Boring Logs & Locations
"N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.
"W" - Natural Moisture Content in percentage of dry weight.
"Qu" - Unconfined Compressive Strength in tons per square foot.
"Rc" - Core recovery in percent for each successive run. "Rqd" - Rock quality designation.
"WH" - Sample was recovered by advancing the sampler with the weight of the hammer.
"P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
SUBSURFACE EXPLORATION LOG
BORING NUMBER: 1

BORING LOG (CONT. SHEET)

PROJECT
Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance)

JOB
7716

Elev. (mts) DEPTH (feet) DESCRIPTION

0.00 soft to soft, light gray, bluish gray, black

S-11 WH WH WH

40 S-12 WH WH WH

50 S-13 WH WH WH

60 S-14 WH WH WH

65 S-15 WH WH WH

70 S-16 WH WH WH

S-17 WH WH WH

SILTY SAND some clay and rock fragments, medium dense to very dense, greenish gray, yellowish brown (Saprolite)

HIGHLY WEATHERED ROCK sampled as gravelly sand with clayey silt, brown, reddish yellow, gray

20 N W Qu RC RQD%

N - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.

W - Natural Moisture Content in percentage of dry weight.

Qu - Unconfined Compressive Strength in tons per square foot.

RC - Core recovery in percent for each successive run. *Rqd* - Rock quality designation.

WH - Sample was recovered by advancing the sampler with the weight of the hammer.

P - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
SUBSURFACE EXPLORATION LOG

BORING LOG (CONT. SHEET)

<table>
<thead>
<tr>
<th>Elev. (mts)</th>
<th>DEPTH (feet)</th>
<th>DESCRIPTION</th>
<th>LEGEND</th>
<th>Sample No.</th>
<th>TYPE</th>
<th>BLOWS</th>
<th>SPT N</th>
<th>W</th>
<th>Qu</th>
<th>RC</th>
<th>RQD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td>3-19</td>
<td>50/2"</td>
<td>50/2"</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>3-20</td>
<td>50/1"</td>
<td>50/1"</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.
"W" - Natural Moisture Content in percentage of dry weight.
"Qu" - Unconfined Compressive Strength in tons per square foot.
"Rc" - Core recovery in percent for each successive run.
"Rqd" - Rock quality designation.
"WH" - Sample was recovered by advancing the sampler with the weight of the hammer.
"P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
SUBSURFACE EXPLORATION LOG

BORING NO.: 2

PROJECT
Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance)

LOCATION
Mayaguez, PR

COORDINATES
241947 N 124639 E

DRILLER/DRILL RIG:
Luis Santos / CME-55

DATE HOLE STARTED
12-14-16

DATE HOLE COMPLETED
12-14-16

DESCRIPTION BY
Manuel Candelario

GROUNDWATER (FT)
Initial: 16
Final: 14

ENGINEER
Rommel Cintron

DRILLING METHOD:
Hollow-Stem Auger 2.25" ID

TOTAL DEPTH OF HOLE (ft): 65.5

Elev. (mts)

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Type</th>
<th>BLOWS</th>
<th>SPT N</th>
<th>W</th>
<th>Qu</th>
<th>RC</th>
<th>RQD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.
"W" - Natural Moisture Content in percentage of dry weight.
"Qu" - Unconfined Compressive Strength in tons per square foot.
"RC" - Core recovery in percent for each successive run.
"Rqd" - Rock quality designation.
"WH" - Sample was recovered by advancing the sampler with the weight of the hammer.
"P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
SUBSURFACE EXPLORATION LOG

BORING LOG (CONT. SHEET)

<table>
<thead>
<tr>
<th>Elev. (mts)</th>
<th>DEPTH (feet)</th>
<th>DESCRIPTION</th>
<th>LEGEND</th>
<th>Sample No.</th>
<th>TYPE</th>
<th>BLOWS</th>
<th>SPT N</th>
<th>W</th>
<th>Qu</th>
<th>RC</th>
<th>RQD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td>S-11</td>
<td></td>
<td>14</td>
<td>29</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>S-12</td>
<td></td>
<td>50/3"</td>
<td>50/3"</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>S-13</td>
<td></td>
<td>50/4"</td>
<td>50/4"</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td>S-14</td>
<td></td>
<td>50/2"</td>
<td>50/2"</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td>S-15</td>
<td></td>
<td>50/2"</td>
<td>50/2"</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>S-16</td>
<td></td>
<td>50/1"</td>
<td>50/1"</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BORING NUMBER: 2

PROJECT
Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance)

JOB: 7716

-N- Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.
-W- Natural Moisture Content in percentage of dry weight.
-Qu- Unconfined Compressive Strength in tons per square foot.
-Rc- Core recovery in percent for each successive run.
-Rqd- Rock quality designation.
-WH- Sample was recovered by advancing the sampler with the weight of the hammer.
-P- A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
SUBSURFACE EXPLORATION LOG

BORING NO.: 3

PROJECT
Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance)

JOB
7716

LOCATION
Mayaguez, PR

DRILLER/DRILL RIG:
Luis Santos / CME-55

COORDINATES
242041 N
124618 E

DATE HOLE STARTED
12-6-16

DATE HOLE COMPLETED
12-6-16

GROUNDWATER (FT)
Initial: 15
Final: 14

GROUNDWATER (FT) Initial:
15

GROUNDWATER (FT) Final:
14

ENGINEER
Rommel Cintron

DESCRIPTION BY
Manuel Candelario

ELEVATION TOP OF HOLE (mts):
7.05

TOTAL DEPTH OF HOLE (ft):
85.5

DRILLING METHOD:
Hollow-Stem Auger 2.25" ID

<table>
<thead>
<tr>
<th>Elev. (mts)</th>
<th>DEPTH (feet)</th>
<th>DESCRIPTION</th>
<th>LEGEND</th>
<th>Sample No.</th>
<th>TYPE</th>
<th>SPT N</th>
<th>W</th>
<th>Qu</th>
<th>RC</th>
<th>RQD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0</td>
<td>FILL: silty sand with gravel, medium dense, yellowish brown, gray</td>
<td>0</td>
<td>S-1</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.83</td>
<td>5</td>
<td>FILL: sand some silt and gravel, loose to medium dense, yellowish brown, gray</td>
<td>4</td>
<td>S-3</td>
<td></td>
<td>6</td>
<td>11</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>GRAVEL with sandy clay, loose, gray, brown</td>
<td>14</td>
<td>S-6</td>
<td></td>
<td>3</td>
<td>10</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.54</td>
<td>13</td>
<td>CLAYEY SAND with rock fragments, medium dense to dense, reddish yellow, brown, gray, yellow (Saprolite)</td>
<td>19</td>
<td>S-7</td>
<td></td>
<td>3</td>
<td>16</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td>S-8</td>
<td></td>
<td>8</td>
<td>33</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
<td>S-9</td>
<td></td>
<td>6</td>
<td>17</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td>S-10</td>
<td></td>
<td>5</td>
<td>13</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.
"W" - Natural Moisture Content in percentage of dry weight.
"Qu" - Unconfined Compressive Strength in tons per square foot.
"RC" - Core recovery in percent for each successive run.
"Rqd" - Rock quality designation.
"WH" - Sample was recovered by advancing the sampler with the weight of the hammer.
"P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
BORING LOG (CONT. SHEET)

PROJECT: Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance)

JOB: 7716

ELEV. (mts)	**DEPTH (feet)**	**DESCRIPTION**	**LEGEND**
0.00 | 0.00 | HIGHLY WEATHERED ROCK sampled as rock fragments with clayey sand, dark gray, yellowish

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>TYPE</th>
<th>BLOWS</th>
<th>SPT</th>
<th>W</th>
<th>Qu</th>
<th>RC</th>
<th>RQD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-11</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>20</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>S-12</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>30</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-13</td>
<td>15</td>
<td>14</td>
<td>12</td>
<td>26</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-14</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>24</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-15</td>
<td>17</td>
<td>24</td>
<td>24</td>
<td>50/4"</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-16</td>
<td>18</td>
<td>19</td>
<td>16</td>
<td>35</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-17</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>24</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:
- **N** - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.
- **W** - Natural Moisture Content in percentage of dry weight.
- **Qu** - Unconfined Compressive Strength in tons per square foot.
- **RC** - Core recovery in percent for each successive run.
- **RQD%** - Rock quality designation.
- **WH** - Sample was recovered by advancing the sampler with the weight of the hammer.
- **P** - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.

Initial G.W. Depth

Final G.W. Depth

Notes:
- "N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.
- "W" - Natural Moisture Content in percentage of dry weight.
- "Qu" - Unconfined Compressive Strength in tons per square foot.
- "RC" - Core recovery in percent for each successive run.
- "RQD%" - Rock quality designation.
- "WH" - Sample was recovered by advancing the sampler with the weight of the hammer.
- "P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
SUBSURFACE EXPLORATION LOG

BORING NUMBER: 3

<table>
<thead>
<tr>
<th>Elev. (mts)</th>
<th>DEPTH (feet)</th>
<th>DESCRIPTION</th>
<th>LEGEND</th>
<th>Sample No.</th>
<th>TYPE</th>
<th>BLOWS</th>
<th>SPT N</th>
<th>W</th>
<th>Qu</th>
<th>RC</th>
<th>RQD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td>brown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td>3-19</td>
<td></td>
<td>50/0"</td>
<td>50/0"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>3-20</td>
<td></td>
<td>45</td>
<td>50/2"</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.

W - Natural Moisture Content in percentage of dry weight.

Qu - Unconfined Compressive Strength in tons per square foot.

RC - Core recovery in percent for each successive run.

RQD% - Rock quality designation.

WH - Sample was recovered by advancing the sampler with the weight of the hammer.

P - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
SUBSURFACE EXPLORATION LOG

PROJECT
Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance)

LOCATION
Mayaguez, PR

COORDINATES
242152 N 124489 E

DESCRIPTION BY
Manuel Candelario

GROUNDWATER (FT)
Initial: 25
Final: 15

DRILLING METHOD:
Hollow-Stem Auger 2.25" ID

TOTAL DEPTH OF HOLE (ft): 85.5

<table>
<thead>
<tr>
<th>Elev. (mts)</th>
<th>DEPTH (feet)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td>FILL: silty sand with gravel, medium dense to dense, yellowish brown, gray</td>
</tr>
<tr>
<td>2.37</td>
<td>9</td>
<td>CLAYEY SILT trace sand, very soft to soft, dark gray, brown</td>
</tr>
<tr>
<td>10.00</td>
<td></td>
<td>Do... with peat and organic matter, bluish gray</td>
</tr>
<tr>
<td>20.00</td>
<td></td>
<td>Do... reddish yellow, gray, white</td>
</tr>
<tr>
<td>35.00</td>
<td></td>
<td>Do... reddish yellow, gray, white</td>
</tr>
</tbody>
</table>

LEGEND

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>TYPE</th>
<th>BLOWS</th>
<th>SPT N</th>
<th>W</th>
<th>Qu</th>
<th>RC</th>
<th>RQD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.

"W" - Natural Moisture Content in percentage of dry weight.

"Qu" - Unconfined Compressive Strength in tons per square foot.

"Rc" - Core recovery in percent for each successive run. "Rqd" - Rock quality designation.

"WH" - Sample was recovered by advancing the sampler with the weight of the hammer.

"P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
BORING LOG (CONT. SHEET)

PROJECT
Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance)

JOB 7716

ELEV. (mts)

<table>
<thead>
<tr>
<th>DEPTH (feet)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>-6.78</td>
<td>CLAYEY SILT trace sand, medium stiff to stiff, yellowish red, brownish yellow, dark gray</td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Do... with sand some gravel, very stiff, yellowish brown, yellow</td>
</tr>
<tr>
<td>70</td>
<td>HIGHLY WEATHERED ROCK sampled as gravelly sand with clayey silt, brown, reddish yellow, gray</td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND

- SPT N: Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.
- SPT W: Natural Moisture Content in percentage of dry weight.
- SPT Qu: Initial G.W. Depth
- SPT Rc: Core recovery in percent for each successive run.
- SPT RQD%: Rock quality designation.
- WH: Sample was recovered by advancing the sampler with the weight of the hammer.
- "P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
Boring Log (Cont. Sheet)

Project: Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance)

Job: 7716

Boring Number: 4

Sheet: 3 of 3

<table>
<thead>
<tr>
<th>Elev. (mts)</th>
<th>Depth (feet)</th>
<th>Description</th>
<th>Legend</th>
<th>Sample No.</th>
<th>Type</th>
<th>Blows</th>
<th>SPT N</th>
<th>W</th>
<th>Qu</th>
<th>RQD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>WEATHERED ROCK sampled as sandy gravel some clayey silt, HCl reaction, dark gray, brown, reddish yellow</td>
<td></td>
<td>8-19</td>
<td>50/1"</td>
<td>50/1"</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.50</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td>8-20</td>
<td>50/5"</td>
<td>50/5"</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **N**: Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.
- **W**: Natural Moisture Content in percentage of dry weight.
- **Qu**: Unconfined Compressive Strength in tons per square foot.
- **RC**: Core recovery in percent for each successive run.
- **RQD%**: Rock quality designation.
- **WH**: Sample was recovered by advancing the sampler with the weight of the hammer.
- **P**: A “P” in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
SUBSURFACE EXPLORATION LOG

BORING NO.: 5

PROJECT
Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance)

LOCATION
Mayaguez, PR

COORDINATES
242586 N 124025 E

DATE HOLE STARTED
12-7-16

DESCRIPTION BY
Manuel Candelario

GROUNDWATER (FT)
Initial: 14
Final: 13

DRILLING METHOD:
Hollow-Stem Auger 2.25" ID

TOTAL DEPTH OF HOLE (ft): 85.5

LEGEND
- Sample No.
- TYPE
- BLOWS
- SPT N
- W
- Qu
- RC
- RQD%

Elev. (mts) vs. DEPTH (feet)

<table>
<thead>
<tr>
<th>Elev. (mts)</th>
<th>DEPTH (feet)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0</td>
<td>FILL: silty sand with gravel, medium dense to very dense, yellowish brown, gray, reddish yellow</td>
</tr>
<tr>
<td>2.52</td>
<td>9</td>
<td>SAND some silt, dense, yellowish gray</td>
</tr>
<tr>
<td>9.99</td>
<td>14</td>
<td>CLAYEY SILT some sand trace gravel, soft to medium stiff, gray, brownish yellow</td>
</tr>
<tr>
<td>15.00</td>
<td>20</td>
<td>CLAYEY SILT, very soft, bluish gray</td>
</tr>
<tr>
<td>25.00</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>30.00</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

N - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.

"W" - Natural Moisture Content in percentage of dry weight.

"Qu" - Unconfined Compressive Strength in tons per square foot.

"Rc" - Core recovery in percent for each successive run. "Rqd" - Rock quality designation.

"WH" - Sample was recovered by advancing the sampler with the weight of the hammer.

"P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
SUBSURFACE EXPLORATION LOG

BORING NUMBER: 5

PROJECT
Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance)

JOB
7716

SHEET
2 of 3

DESCRIPTION

<table>
<thead>
<tr>
<th>Elev. (mts)</th>
<th>DEPTH (feet)</th>
<th>TYPE</th>
<th>SPT N</th>
<th>W</th>
<th>Qu</th>
<th>RC</th>
<th>RQD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>WH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>S-11</td>
<td>WH</td>
<td></td>
<td></td>
<td>62</td>
<td>0.6</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>S-12</td>
<td>WH</td>
<td></td>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>S-13</td>
<td>WH</td>
<td></td>
<td></td>
<td>88</td>
<td>1.0</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>S-14</td>
<td>WH</td>
<td></td>
<td></td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>S-15</td>
<td>WH</td>
<td></td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>S-16</td>
<td>WH</td>
<td></td>
<td></td>
<td>37</td>
<td>1.3</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>S-17</td>
<td>WH</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>S-16</td>
<td>WH</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND
- S-11: Sample No.
- WH: Sample was recovered by advancing the sampler with the weight of the hammer.
- N: Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.
- W: Natural Moisture Content in percentage of dry weight.
- Qu: Unconfined Compressive Strength in tons per square foot.
- RC: Core recovery in percent for each successive run.
- RQD%: Rock Quality Designation.

Note:
- "N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.
- "W" - Natural Moisture Content in percentage of dry weight.
- "Qu" - Unconfined Compressive Strength in tons per square foot.
- "RC" - Core recovery in percent for each successive run.
- "RQD%" - Rock Quality Designation.
- "WH" - Sample was recovered by advancing the sampler with the weight of the hammer.
- "P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
<table>
<thead>
<tr>
<th>Elev. (mts)</th>
<th>DEPTH (feet)</th>
<th>DESCRIPTION</th>
<th>LEGEND</th>
<th>Sample No.</th>
<th>TYPE</th>
<th>SPT</th>
<th>W</th>
<th>Qu</th>
<th>RC</th>
<th>RQD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>3-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>Do... sampled as clayey silt with sand, pale yellow</td>
<td></td>
<td>3-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50/2"</td>
<td>50/2"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.

W - Natural Moisture Content in percentage of dry weight.

Qu - Unconfined Compressive Strength in tons per square foot.

Rc - Core recovery in percent for each successive run. *Rqd* - Rock quality designation.

WH - Sample was recovered by advancing the sampler with the weight of the hammer.

P - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
Subsurface Exploration Log

Project: Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance)

Location: Mayaguez, PR

Coordinates: 242677 N 123933 E

Date Hole Started: 12-9-16

Date Hole Completed: 12-9-16

Description by: Manuel Candelario

Elevation Top of Hole (mts): 7.44

Engineer: Rommel Cintron

Drilling Method: Hollow-Stem Auger 2.25" ID

Total Depth of Hole (ft): 45.5

LEGEND:
- Sample No.
- Type
- SPT N
- W
- Qu
- RC
- RQD%

<table>
<thead>
<tr>
<th>Elev. (mts)</th>
<th>DEPTH (feet)</th>
<th>DESCRIPTION</th>
<th>SAMPLE NO.</th>
<th>TYPE</th>
<th>SPT N</th>
<th>W</th>
<th>Qu</th>
<th>RC</th>
<th>RQD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td>FILL: Silty sand and some gravel, medium dense, brown, gray</td>
<td>S-1</td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td>CLAYEY Silt some sand, relic joints, very stiff to hard, brownish yellow, reddish yellow, dark gray (Saprolite)</td>
<td>S-2</td>
<td></td>
<td>4</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>S-3</td>
<td></td>
<td>5</td>
<td>24</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>S-4</td>
<td></td>
<td>8</td>
<td>14</td>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>S-5</td>
<td>50/4"</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>TEETH SAND, very dense, reddish yellow (Saprolite)</td>
<td>S-6</td>
<td></td>
<td>8</td>
<td>55</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Do... with rock fragments</td>
<td>S-7</td>
<td></td>
<td>8</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>WEATHERED ROCK sampled as gravel with silty sand, brownish yellow, dark gray</td>
<td>S-8</td>
<td>50/5"</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>S-9</td>
<td>50/4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>S-10</td>
<td>50/3"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

N - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.

W - Natural Moisture Content in percentage of dry weight.

Qu - Unconfined Compressive Strength in tons per square foot.

RC - Core recovery in percent for each successive run.

RQD - Rock quality designation.

WH - Sample was recovered by advancing the sampler with the weight of the hammer.

P - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
Subsurface Exploration Log

Boring Number: 6

Project: Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance)

Job: 7716

Boring Log (Cont. Sheet)

<table>
<thead>
<tr>
<th>Elev. (mts)</th>
<th>Depth (feet)</th>
<th>Description</th>
<th>Sample No.</th>
<th>Type</th>
<th>Blows</th>
<th>SPT N</th>
<th>W</th>
<th>Qu</th>
<th>RC</th>
<th>RQD%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td>Sampled as gravel</td>
<td>S-11</td>
<td>50/2"</td>
<td>50/2"</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>S-12</td>
<td>50/1"</td>
<td>50/1"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"N" - Number of blows required to drive the sampling spoon a distance of 12 in. with a 140 lbs hammer falling 30 in.

"W" - Natural Moisture Content in percentage of dry weight.

"Qu" - Unconfined Compressive Strength in tons per square foot.

"RC" - Core recovery in percent for each successive run.

"RQD" - Rock quality designation.

"WH" - Sample was recovered by advancing the sampler with the weight of the hammer.

"P" - A "P" in the Unconfined Compressive Strength test indicates the use of the pocket Penetrometer.
Appendix B:
Laboratory Tests Results
Particle Size Distribution Report

Material Description

Poorly graded gravel with silt and sand

Atterberg Limits

<table>
<thead>
<tr>
<th>Limit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>NP</td>
</tr>
<tr>
<td>LL</td>
<td>NP</td>
</tr>
<tr>
<td>PI</td>
<td>NP</td>
</tr>
</tbody>
</table>

Coefficients

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{50}</td>
<td>3.41</td>
</tr>
<tr>
<td>D_{60}</td>
<td>6.20</td>
</tr>
<tr>
<td>D_{30}</td>
<td>0.673</td>
</tr>
<tr>
<td>C_{c}</td>
<td>0.159</td>
</tr>
<tr>
<td>C_{u}</td>
<td></td>
</tr>
</tbody>
</table>

Classification

USCS: GP-GM
AASHTO: A-1-a

Remarks

Tested by: S. Perez
Checked by: Rommel Cintron Aponte, MSCE, PE
F.M.=1.80

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 in.</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 in.</td>
<td>93.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.75 in.</td>
<td>82.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5 in.</td>
<td>72.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.375 in.</td>
<td>67.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>55.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>42.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>24.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>14.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>11.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Sample No.: Bo. 1
Source of Sample: Project Site
Date: 2/2/17
Elev./Depth: 19-25.5'

Client: Jose A. Batlle & Associates
Project: Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance, La Vita)-Mayaguez, PR
Project No.: 7716
Particle Size Distribution Report

Material Description
- Fat clay

Atterberg Limits
- PL = 29
- LL = 64
- PI = 35

Coefficients
- $D_{85} =$
- $D_{60} =$
- $D_{50} =$
- $D_{30} =$
- $D_{15} =$
- $D_{10} =$
- $C_c =$

Classification
- USCS = CH
- AASHTO = A-7-6(35)

Remarks
- Tested by: S. Perez
- Checked by: Rommel Cintron Aponte, MSCE, PE
- F.M. = 0.17

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.75 in.</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5 in.</td>
<td>98.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.375 in.</td>
<td>97.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>96.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>94.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>91.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>88.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>87.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Sample No.: Bo. 1 (Shelby)
Source of Sample: Project Site
Date: 2/2/17
Elev./Depth: 34-36'

JACA & SIERRA
TESTING LABORATORIES
San Juan, Puerto Rico

Client: Jose A. Batlle & Associates

Project: Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance, La Vita)-Mayaguez, PR

Project No.: 7716
Figure:
Particle Size Distribution Report

Project Information

- **Project No.:** Not specified
- **Project:** Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance, La Vita)-Mayaguez, PR
- **Client:** Jose A. Batlle & Associates
- **Source of Sample:** Project Site
- **Location:** Mayaguez, PR
- **Date:** 1/11/17
- **Elev./Depth:** 44-46'

Material Description

- **Material:** Elastic silt

Atterberg Limits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>36</td>
</tr>
<tr>
<td>LL</td>
<td>64</td>
</tr>
<tr>
<td>PI</td>
<td>28</td>
</tr>
</tbody>
</table>

Coefficients

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₈₅</td>
<td></td>
</tr>
<tr>
<td>D₆₀</td>
<td></td>
</tr>
<tr>
<td>D₅₀</td>
<td></td>
</tr>
<tr>
<td>D₃₀</td>
<td></td>
</tr>
<tr>
<td>D₁₅</td>
<td></td>
</tr>
<tr>
<td>Cₚ</td>
<td></td>
</tr>
</tbody>
</table>

Classification

- **USCS:** MH
- **AASHTO:** A-7-5(33)

Remarks

- **Tested by:** S. Perez
- **Checked by:** Rommel Cintron Aponte, MSCE, PE
- **F.M.:** 0.05

Sieve Analysis

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Finer</th>
<th>Specific Percent</th>
<th>Pass? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>100.0</td>
<td>99.7</td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>98.3</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>98.3</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>95.1</td>
<td>95.1</td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>93.9</td>
<td>93.9</td>
<td></td>
</tr>
</tbody>
</table>

Particle Size Distribution

- **% Cobble:** 0.0
- **% Gravel:** 0.0
- **% Sand:** 6.1
- **% Silt:** 93.9
- **% Clay:** 93.9
Particle Size Distribution Report

% COBBLES	% GRAVEL	% SAND	% SILT	% CLAY
0.0 | 5.4 | 71.6 | | 23.0 |

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.5 in.</td>
<td>100.0</td>
<td>99.5</td>
<td>94.6</td>
</tr>
<tr>
<td>.375 in.</td>
<td>99.5</td>
<td>68.9</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>94.6</td>
<td>31.8</td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>68.9</td>
<td>23.9</td>
<td>23.0</td>
</tr>
<tr>
<td>#40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Description
Silty sand

Atterberg Limits
PL = 28
LL = 44
PI = 16

Coefficients
D_85 = 3.24
D_60 = 1.51
D_50 = 1.06
D_30 = 0.369
D_15 =
C_u =
C_c =

Classification
USCS = SM
AASHTO = A-2-7(0)

Remarks
Tested by: S. Perez
Checked by: Rommel Cintron Aponte, MSCE, PE
F.M. = 0.82

Sample No.: Bo. 3
Location: Mayaguez, PR
Source of Sample: Project Site
Date: 2/2/17
Elev./Depth: 29-35.5'

Client: Jose A. Batlle & Associates
Project: Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance, La Vita)-Mayaguez, PR
Project No.: 7716
Figure
Particle Size Distribution Report

Material Description
- Elastic silt

Atterberg Limits
- PL = 34
- LL = 71
- PI = 37

Coefficients
- D_85 =
- D_60 =
- D_30 =
- D_15 =
- C_u =
- C_c =

Classification
- USCS = MH
- AASHTO = A-7-5(43)

Remarks
- Tested by: S. Perez
- Checked by: Rommel Cintron Aponte, MSCE, PE
- F.M. = 0.04

Sample No.: Bo. 4
Source of Sample: Project Site
Location: Mayaguez, PR
Date: 2/2/17
Elev./Depth: 19-25.5'

JACA & SIERRA TESTING LABORATORIES
San Juan, Puerto Rico

Client: Jose A. Batlle & Associates
Project: Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance, La Vita)-Mayaguez, PR
Particle Size Distribution Report

<table>
<thead>
<tr>
<th>Grain Size (mm)</th>
<th>% COBBLES</th>
<th>% GRAVEL</th>
<th>% SAND</th>
<th>% SILT</th>
<th>% CLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>99.3</td>
<td>0.0</td>
</tr>
<tr>
<td>30</td>
<td>100.0</td>
<td>99.7</td>
<td>99.5</td>
<td>99.3</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>99.5</td>
<td>99.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sieve Sizes: #10, #40, #100, #200

Material Description:
- Fat clay

Atterberg Limits:
- PL = 28
- LL = 68
- PI = 40

Coefficients:
- D_{60} =
- D_{50} =
- D_{10} =
- C_{c} =
- C_{u} =

Classification:
- USCS = CH
- AASHTO = A-7-6(47)

Remarks:
Tested by: S. Perez
Checked by: Rommel Cintron Aponte, MSCE, PE
F.M. = 0.0

Sample No.: Bo. 5
Source of Sample: Project Site
Date: 2/2/17
Elev./Depth: 19-25.5'

JACA & SIERRA TESTING LABORATORIES
San Juan, Puerto Rico

Client: Jose A. Batlle & Associates
Project: Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance, La Vita)-Mayaguez, PR
Project No: 7716
Figure
Project No: 7716

Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance, La Vita)-Mayaguez, PR

Client: Jose A. Batlle & Associates
Project: Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance, La Vita)-Mayaguez, PR

JACA & SIERRA
TESTING LABORATORIES
San Juan, Puerto Rico
Particle Size Distribution Report

Material Description

Sandy silt

Atterberg Limits

- PL = 38
- LL = 46
- PI = 8

Coefficients

- $D_{85} = 0.375$
- D_{60}^c
- D_{15}^e
- D_{10}^c
- C_c

Classification

- USCS = ML
- AASHTO = A-5(6)

Remarks

Tested by: S. Perez
Checked by: Rommel Cintron Aponte, MSCE, PE
F.M. = 0.27

<table>
<thead>
<tr>
<th>SIEVE SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* SANDB</th>
<th>PASS?</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>.375 in.</td>
<td>100.0</td>
<td>99.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>96.0</td>
<td>86.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>73.7</td>
<td>65.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>#40</td>
<td>#100</td>
<td>#100</td>
<td>#200</td>
</tr>
<tr>
<td></td>
<td>#30</td>
<td>#200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample No.: Bo. 5 (Shelby)
Source of Sample: Project Site
Date: 1/11/17
Elev./Depth: 50-52'
Particle Size Distribution Report

Material Description
Elastic silt with sand

Atterberg Limits
- PL = 35
- LL = 50
- PI = 15

Coefficients
- $D_{95} = 0.213$
- $D_{60} = $
- $D_{50} = $
- $C_u = $
- $C_c = $
- $D_{10} = $

Classification
- USCS = MH
- AASHTO = A-7-5(14)

Remarks
- Tested by: S. Perez
- Checked by: Rommel Cintron Aponte, MSCE, PE
- F.M. = 0.17

Sieve Size |
| 0.0 | 0.0 | 20.8 | 79.2 |

<table>
<thead>
<tr>
<th>SIZE</th>
<th>PERCENT FINER</th>
<th>SPEC.* PERCENT</th>
<th>PASS? (X=NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td>97.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#40</td>
<td>88.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#100</td>
<td>83.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>79.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (no specification provided)

Sample No.: Bo. 6
Source of Sample: Project Site
Date: 2/2/17
Elev./Depth: 4-7.5'

Client: Jose A. Batlle & Associates
Project: Improvements to Intersection PR-2, 2R & San Juan St. (RUM Entrance, La Vita)-Mayaguez, PR
Project No.: 7716
Figure:
CONsolidation test data
SUMMARY report

- Void ratio vs. Vertical Stress (psf)

- Creep strain rate vs. Vertical Stress (psf)

Project: RUM Entrance, La Vila | Location: Mayaguez, PR | Project No.: 7716
Boring No.: 1 | Tested By: M Mendoza | Checked By: J García
Sample No.: - | Test Date: 10-Jan-17 | Depth: 44'-46'
Test No.: 1 | Sample Type: Undisturbed | Elevation: -
Description: Elastic Silt
Remarks:
CONsolidation Test Data

Summary Report

- Void Ratio vs Vertical Stress, psf
- Cv vs Vertical Stress, psf

Project: Rum Entrance, La Vila
Location: Mayaguez, PR
Project No.: 7716

Boring No.: 5
Tested By: M Mendoza
Checked By: J Garcia

Sample No.: -
Test Date: 23-DEC-16
Depth: 40'-42'

Test No.: 1
Sample Type: Undisturbed
Elevation: -

Description: Elastic Silt
Remarks:
CONSOLIDATION TEST DATA
SUMMARY REPORT

![Graph showing consolidation test data]

Project: RUM Entrance, La Vila
Location: Mayaguez, PR
Project No.: 7716

Boring No.: 5
Tested By: M. Mendoza
Checked By: J. Garcia

Sample No.: -
Test Date: 29-Dec-16
Depth: 50'-52'

Test No.: 1
Sample Type: Undisturbed
Elevation: -

Description: Sandy Silt

Remarks:
Appendix C: SHAFT v5.0 Software Graphs
Depth vs. Allowable Compressive Axial Load - Drilled Shaft in Boring no. 1
Depth vs. Allowable Compressive Axial Load - Drilled Shaft in Boring no. 2
Depth vs. Allowable Compressive Axial Load - Drilled Shaft in Boring no. 3
Total Capacity w/F.S. (tons)

Depth vs. Allowable Compressive Axial Load - Drilled Shaft in Boring no. 4

Depth (ft)

Dia=4 ft
Dia=4.5 ft
Dia=5 ft
Dia=5.5 ft
Dia=6 ft
Dia=6.5 ft
Dia=7 ft
Dia=7.5 ft
Dia=8 ft
Total Capacity w/F.S. (tons)

Depth vs. Allowable Compressive Axial Load - Drilled Shaft in Boring no. 6

Depth (ft)

Dia=4 ft
Dia=4.5 ft
Dia=5 ft
Dia=5.5 ft
Dia=6 ft
Dia=6.5 ft
Dia=7 ft
Dia=7.5 ft
Dia=8 ft
Appendix D:
LPILE 2013 Software Tables
Soil Parameters for LPILE 2013 Software – Boring no. 1

<table>
<thead>
<tr>
<th>Stratum no.</th>
<th>Depth Range (ft)</th>
<th>Soil Type</th>
<th>Effective Unit Weight - γ' (pcf)</th>
<th>Angle of Internal Friction - ϕ (°)</th>
<th>k Value (pci)</th>
<th>Undrained Cohesion - c (psf)</th>
<th>Strain Factor ε_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-11</td>
<td>Sand</td>
<td>110-115</td>
<td>30-32</td>
<td>90</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>11-15</td>
<td>Sand</td>
<td>115</td>
<td>29</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>15-34</td>
<td>Sand</td>
<td>50-55</td>
<td>29-31</td>
<td>20-60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>34-59</td>
<td>Soft Clay</td>
<td>40-45</td>
<td>-</td>
<td>-</td>
<td>500-1000</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>59-69</td>
<td>Sand</td>
<td>55-65</td>
<td>33-36</td>
<td>60-125</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>69-100</td>
<td>Sand</td>
<td>65-75</td>
<td>37-42</td>
<td>125</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Soil Parameters for LPILE 2013 Software – Boring no. 2

<table>
<thead>
<tr>
<th>Stratum no.</th>
<th>Depth Range (ft)</th>
<th>Soil Type</th>
<th>Effective Unit Weight - γ' (pcf)</th>
<th>Angle of Internal Friction - ϕ (°)</th>
<th>k Value (pci)</th>
<th>Undrained Cohesion - c (psf)</th>
<th>Strain Factor ε_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-2</td>
<td>Sand</td>
<td>115</td>
<td>30</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2-14</td>
<td>Sand</td>
<td>55-65</td>
<td>33-36</td>
<td>90-225</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>14-45</td>
<td>Sand</td>
<td>65-75</td>
<td>37-42</td>
<td>125</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>45-100</td>
<td>Sand</td>
<td>75</td>
<td>42</td>
<td>125</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Soil Parameters for LPILE 2013 Software – Boring no. 3

<table>
<thead>
<tr>
<th>Stratum no.</th>
<th>Depth Range (ft)</th>
<th>Soil Type</th>
<th>Effective Unit Weight - γ' (pcf)</th>
<th>Angle of Internal Friction - ϕ (°)</th>
<th>k Value (pci)</th>
<th>Undrained Cohesion - c (psf)</th>
<th>Strain Factor ε_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-4</td>
<td>Sand</td>
<td>110</td>
<td>31</td>
<td>90</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>4-14</td>
<td>Sand</td>
<td>110-115</td>
<td>30-32</td>
<td>90</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>14-19</td>
<td>Sand</td>
<td>55</td>
<td>32</td>
<td>60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>19-74</td>
<td>Sand</td>
<td>55-75</td>
<td>33-36</td>
<td>60-125</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>74-100</td>
<td>Sand</td>
<td>75</td>
<td>37-42</td>
<td>125</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Soil Parameters for LPILE 2013 Software – Boring no. 4

<table>
<thead>
<tr>
<th>Stratum no.</th>
<th>Depth Range (ft)</th>
<th>Soil Type</th>
<th>Effective Unit Weight - γ' (pcf)</th>
<th>Angle of Internal Friction - ϕ (°)</th>
<th>k Value (pci)</th>
<th>Undrained Cohesion - c (psf)</th>
<th>Strain Factor ε_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-9</td>
<td>Sand</td>
<td>110-115</td>
<td>30-32</td>
<td>90</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>9-15</td>
<td>Soft Clay</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>500</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>15-39</td>
<td>Soft Clay</td>
<td>35-45</td>
<td>-</td>
<td>-</td>
<td>500-1000</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>39-69</td>
<td>Stiff Clay</td>
<td>45-55</td>
<td>-</td>
<td>500</td>
<td>1000-1500</td>
<td>0.007</td>
</tr>
<tr>
<td>5</td>
<td>69-100</td>
<td>Sand</td>
<td>65-75</td>
<td>37-42</td>
<td>125</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Soil Parameters for LPILE 2013 Software – Boring no. 5

<table>
<thead>
<tr>
<th>Stratum no.</th>
<th>Depth Range (ft)</th>
<th>Soil Type</th>
<th>Effective Unit Weight - γ' (pcf)</th>
<th>Angle of Internal Friction - ϕ (°)</th>
<th>k Value (pci)</th>
<th>Undrained Cohesion - c (psf)</th>
<th>Strain Factor ε_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-9</td>
<td>Sand</td>
<td>110-115</td>
<td>31-33</td>
<td>90</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>9-14</td>
<td>Sand</td>
<td>110</td>
<td>33</td>
<td>90</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>14-34</td>
<td>Stiff Clay</td>
<td>40-45</td>
<td>-</td>
<td>500</td>
<td>1000-1500</td>
<td>0.007</td>
</tr>
<tr>
<td>4</td>
<td>34-54</td>
<td>Soft Clay</td>
<td>35-40</td>
<td>-</td>
<td>-</td>
<td>500-1000</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>54-64</td>
<td>Sand</td>
<td>50-55</td>
<td>31-33</td>
<td>60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>64-69</td>
<td>Stiff Clay</td>
<td>55</td>
<td>-</td>
<td>500-1000</td>
<td>2000</td>
<td>0.007-0.005</td>
</tr>
<tr>
<td>7</td>
<td>69-100</td>
<td>Sand</td>
<td>55-65</td>
<td>37-42</td>
<td>125</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Soil Parameters for LPILE 2013 Software – Boring no. 6

<table>
<thead>
<tr>
<th>Stratum no.</th>
<th>Depth Range (ft)</th>
<th>Soil Type</th>
<th>Effective Unit Weight - γ' (pcf)</th>
<th>Angle of Internal Friction - ϕ (°)</th>
<th>k Value (pci)</th>
<th>Undrained Cohesion - c (psf)</th>
<th>Strain Factor ε_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-2</td>
<td>Sand</td>
<td>110</td>
<td>30</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2-13</td>
<td>Stiff Clay</td>
<td>110-120</td>
<td>-</td>
<td>500-1000</td>
<td>1000-3000</td>
<td>0.007-0.005</td>
</tr>
<tr>
<td>3</td>
<td>13-19</td>
<td>Stiff Clay</td>
<td>55</td>
<td>-</td>
<td>1000</td>
<td>3000</td>
<td>0.005</td>
</tr>
<tr>
<td>4</td>
<td>19-29</td>
<td>Sand</td>
<td>55-65</td>
<td>33-36</td>
<td>60-125</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>29-60</td>
<td>Sand</td>
<td>65-75</td>
<td>37-42</td>
<td>125</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>60-100</td>
<td>Sand</td>
<td>75</td>
<td>42</td>
<td>125</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Appendix E:
Generalized Soil Profile